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Motivation
Embedding into polyquasigroups

Definitions
Romanowska-Smith theorem

Subreducts of modules

Definition

Algebra (A, Ω) is a reduct of a module (A, +, 0,R) if for each
ω ∈ Ω there are rω

i ∈ R such that

ω(x1, . . . , xn) = rω
1 x1 + · · · + rω

n xn.

A subreduct is a subalgebra of a reduct.
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Entropic identities

Fact

Each subreduct of a module over a commutative ring is entropic,
i.e. it satisfies all identities

µ(ν(x1
1 , . . . , x1

n ), . . . , ν(xm
1 , . . . , xm

n ))

≈ ν(µ(x1
1 , . . . , xm

1 ), . . . , µ(x1
n , . . . , xm

n ))

Example of an entropic identity

ν

µ

z2z1

µ

y2y1

µ

x2x1

≈

µ

ν

z2y2x2

ν

z1y1x1
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Definitions
Romanowska-Smith theorem

Cancellative algebras

Cancellation Law

ω(x1, . . . , y , . . . , xn) ≈ ω(x1, . . . , z , . . . , xn) −→ y ≈ z

Cancellative algebras:

1 (Quasi)Groups,

2 (R − {0}, ·), where R is an integral domain,

3 Let M be a R-module and r1, . . . , rn ∈ R −
⋃

m∈M Ann(m). If

ω(m1, . . . ,mn) = r1m1 + . . . + rnmn,

then the algebra (M, ω) is cancellative.
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Definitions
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Romanowska-Smith theorem

Theorem (Romanowska, Smith)

If entropic idempotent algebra (a mode) is cancellative, then it is a
subreduct of a module over a commutative ring.

Problem

Do we really need such strong assumptions?

In particular do we
need

1 idempotency?

2 all cancellation laws?
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Definitions
Romanowska-Smith theorem

Polyquasigroups

Definition

An algebra (A, Ω) is a polyquasigroup if each translation

x 7→ ω(a1, . . . , ai−1, x , ai+1, . . . , an),

where aj ∈ A and ω ∈ Ω, is bijective.

Theorem (Sholander, Ježek, Kepka, Stronkowski)

Let V be a variety of entropic algebras. If an algebra from V is
cancellative, then it is a subalgebra of a polyquasigroup from V.
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Definitions
Romanowska-Smith theorem

Proof of Romanowska-Smith theorem.

1 Embed a cancellative mode (A, Ω) into a mode
polyquasigroup (B, Ω).

2 For a basic operation ω of an arity n > 1 define

ω1(x1, . . . , xn) = y iff ω(y , x2, . . . , xn) = x1 and

ωn(x1, . . . , xn) = y iff ω(x1, x2, . . . , y) = xn

3 Then the operation

M(x , y , z) = ω(ω1(x , z , . . . , z), y , . . . , y ,

ωn(ω1(y , z , . . . , z), y , . . . , y , z))

is Mal’cev and

4 (B, Ω,M) is a Mal’cev mode equivalent to an affine space.
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Main theorem
Corollaries

Weakly cancellative algebras and weak polyquasigroup

Definition

(A, Ω) is weakly cancellative if

1 there is a distinguished operation ω ∈ Ω of arity n > 1 with

ω(y , x1, . . . , xn−1) ≈ ω(z , x1, . . . , xn−1) → y ≈ z ,

ω(x1, . . . , xn−1, y) ≈ ω(x1, . . . , xn−1, z) → y ≈ z

holding in (A, Ω),

2 for each ω ∈ Ω of arity at least 2

ω(y , x1, . . . , xn−1) ≈ ω(z , x1, . . . , xn−1) → y ≈ z

holds in (A, Ω).

(A, Ω) is a weak polyquasigroup if the appropriate translations are
bijective.
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Main theorem
Corollaries

Main result

Theorem

Let A be an entropic and weakly cancellative algebra. There exists
an entropic weak polyquasigroup B with A as a subalgebra.

Moreover

1 A and B satisfy precisely the same identities,

2 if A is subdirectly irreducible, then B is subdirectly irreducible
as well,

3 each homomorphism A
h→ C into an entropic weak

polyquasigroup is uniquely factorable as A ↪→ B
h̃→ C.
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Main theorem
Corollaries

Proof of the main result

Proof.

It splits into two parts:

1 a free weakly cancellative entropic algebra is a subreduct of a
vector space,

2 if A is a dense subalgebra of a weak polyquasigroup B, then
each weakly cancellative congruence on A may be extended to
the unique weakly cancellative congruence on B.

The proof of the first part is based on some technical tricks.
The second part was obtained from the proof in groupoid case,
given by J. Ježek and T. Kepka, by a simple translation.
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Main theorem
Corollaries

Easy corollaries

Theorem

Each entropic and weakly cancellative algebra with an idempotent
element is a subreduct of a module over a commutative ring.

Theorem

Each entropic and weakly cancellative algebra is quasi-affine.

Proofs.

The same as the proof of Romanowska-Smith theorem.

Micha l Stronkowski Embedding algebras into entropic polyquasigroups



Motivation
Embedding into polyquasigroups

Main theorem
Corollaries

Easy corollaries

Theorem

Each entropic and weakly cancellative algebra with an idempotent
element is a subreduct of a module over a commutative ring.

Theorem

Each entropic and weakly cancellative algebra is quasi-affine.

Proofs.

The same as the proof of Romanowska-Smith theorem.

Micha l Stronkowski Embedding algebras into entropic polyquasigroups



Motivation
Embedding into polyquasigroups

Main theorem
Corollaries

Easy corollaries

Theorem

Each entropic and weakly cancellative algebra with an idempotent
element is a subreduct of a module over a commutative ring.

Theorem

Each entropic and weakly cancellative algebra is quasi-affine.

Proofs.

The same as the proof of Romanowska-Smith theorem.

Micha l Stronkowski Embedding algebras into entropic polyquasigroups



Motivation
Embedding into polyquasigroups

Main theorem
Corollaries

A weak definition

Definition

(A, Ω) is weakly2 cancellative weakly entropic if there is an
operation ω ∈ Ω of arity n > 1 such that

1 ω : (A, Ω)n → (A, Ω) is a homomorphism.

2 quasi-identities

ω(y , x1, . . . , xn−1) ≈ ω(z , x1, . . . , xn−1) → y ≈ z ,

ω(x1, . . . , xn−1, y) ≈ ω(x1, . . . , xn−1, z) → y ≈ z

hold in (A, Ω).

The definition of of a weakly entropic weak2 polyquasigroup is
analogous.
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Not so easy corollaries

Theorem (main theorem improved)

Let A be a weakly2 cancellative weakly entropic algebra. There
exists a weakly entropic weak2 polyquasigroup B with A as a
subalgebra.

Moreover

1 A and B satisfy precisely the same identities,

2 if A is subdirectly irreducible, then B is subdirectly irreducible
as well,

3 each homomorphism A
h→ C into an entropic weak

polyquasigroup is uniquely factorable as A ↪→ B
h̃→ C.

Theorem (Kearnes)

Each weakly2 cancellative weakly entropic algebra is quasi-affine.
In particular it is central.
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Difficult corollary

Theorem

Each weakly cancellative entropic algebra is a subreduct of a
module over a commutative ring.

Problem

Is each weakly2 cancellative entropic algebra a subreduct of a
module over a commutative ring?
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The End

Thank you for your attention :-)
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